Przejdź do głównej zawartości

I See You Through






X-rays are invaluable in the evaluation of gunshot wounds. They should be taken in all gunshot wound cases, especially those in which there appears to be an exit wound. X-rays are useful for a variety of reasons:
1.  To see whether the bullet or any part of it is still in the body.
2.  To locate the bullet.
3.  To locate for retrieval small fragments deposited in the body by a bullet that has exited.
4.  To identify the type of ammunition or weapon used prior to autopsy or to make such an identification if it cannot be made at autopsy
5.  To document the path of the bullet.

Using x-rays to locate a bullet will save valuable time at autopsy whether one is dealing with a routine or a special situation. In instances of bullet emboli, x-rays are invaluable in locating the bullet. Hours of tedious dissection can be saved. X-rays are also helpful in instances where a bullet track abruptly ends in muscle and no missile is present at the end of the track. Theoretically, one should have a hemorrhagic track from the entrance to the site where the bullet finally lodges. However, in some instances — especially with small-caliber bullets such as the .22 rimfire — the last 3 to 4 in. of the track, if it is in skeletal muscle, may be free from hemorrhage and virtually unidentifiable because the bullet has slipped in between and along fascial planes. Such an occurrence is seen most commonly in the arm and thigh. Occasionally an exiting bullet will have enough energy to create a defect in the skin but will rebound back into the body. This may be due either to the elastic nature of the skin or to resistance from overlying clothing. A special situation can arise with partial metal-jacketed bullets. Here separation of the jacket and the core can occur as the missile moves through the body. The lead core may exit while the jacket remains. At autopsy, if one is unaware that the jacket is present in the body and that it was the core that exited rather than the whole bullet, the jacket can readily be missed. This is especially true if the jacket lodges in the muscle adjacent to the exit. To compound the problem, the core may be recovered at the scene by the police and then be mistaken for the complete bullet. The medical examiner may be informed that the “bullet” was recovered. Facilitating the misidentification of a lead core as a bullet is the fact that the core may have very faint “rifling” marks impressed on it through the jacket. These marks, however, are class characteristics, not individual characteristics; thus, ballistic comparison is not possible. Although in most instances the lead core exits and the jacket remains, sometimes the opposite situation occurs, with the jacket exiting the body. The recovered bullet core will show the impressed marks of the lands and grooves. Ballistic comparison cannot be made, however, as these are only class characteristics. If the fragments are large enough, they can be submitted for quantitative compositional analysis by inductively coupled plasma atomic emission spectroscopy. A comparison can then be made with a bullet recovered at the scene and suspected to be the lethal missile. The trace metal content of these fragments may also be compared with bullets in a box of cartridges that is thought to have been the source of the fatal cartridge. Although no one can testify absolutely that a fragment came from a particular bullet or box of ammunition, one can testify that the fragment and the other ammunition are identical in all measurable properties. If the combination of trace metals is very rare, one can say that the probability of the bullet coming from another source is extremely small. In x-rays of through-and-through gunshot wounds, the presence of small fragments of metal along the wound track virtually rules out full metal jacketed ammunition, such as may be used in a semi-automatic pistol. The reverse is not true, however; absence of lead on x-ray does not necessarily rule out a lead bullet. In rare instances, involving full metal-jacketed centerfire rifle bullets, a few small, dust-like fragments of lead may be seen on x-ray if the bullet perforates bone. One of the most characteristic x-rays and one that will indicate the type of weapon and ammunition used is that seen from centerfire rifles firing hunting ammunition. In such a case, one will see a “lead snowstorm”. Examination of the x-ray, however, will show that these fragments are larger, coarser and significantly fewer in number than those seen in the “lead snowstorm”. Routine x-rays in deaths from gunshot wound may reveal old bullets, pellets, or bullet fragments unrelated to the victim’s death. There is usually no problem distinguishing them from new bullets when they are recovered, as the old bullets are encapsulated in fibrous scar tissue. These bullets usually have a black color as a result of oxidation. Black discoloration can occur in a new bullet, however, if the bullet is exposed to the contents of the gastrointestinal tract. The pellet perforated the left lung, coming to rest in the musculature of the back adjacent to the spinal column. In gunshot wounds of the skull, a large fragment of lead may be deposited between the scalp and the outer table of the skull at the entrance site. This piece of lead is sheared off the bullet as it enters. wad picked up from the barrel as the wad moved down it.

In shotgun wounds in charred bodies, the range at which the individual was shot is often an important question. Determination of range cannot be made from the spread of the pellets on x-rays. Pellets entering the body in a mass strike one another, dispersing at random angles throughout the tissue. In some cases, bullets carry fragments of an intermediary target into the body and these can be visualized on x-rays. Examples would be links of a necklace or wrist chain, links from a zipper or wire screen. X-rays should always be taken while the deceased is fully clothed, it will reveal bullets that exited the body and are retained in the clothing.



Acknowledgements:
The Police Department;
www.politie.nl and a Chief Inspector – Mr. Erik Akerboom     ©

 Bibliography:

1.            Criminal Investigations – Crime Scene Investigation.2000
2.            Forensic Science.2006
3.            Techniques of Crime Scene Investigation.2012
4.            Forensics Pathology.2001
5.            Pathology.2005 
6.            Forensic DNA Technology (Lewis Publishers,New York, 1991).
7.            The Examination and Typing of Bloodstains in the Crime Laboratory (U.S. Department of Justice, Washington, D.C., 1971).
8.            „A Short History of the Polymerase Chain Reaction". PCR Protocols. Methods in Molecular Biology.
9.            Molecular Cloning: A Laboratory Manual (3rd ed.). Cold Spring Harbor,N.Y.: Cold Spring Harbor Laboratory Press.2001
10.          "Antibodies as Thermolabile Switches: High Temperature Triggering for the Polymerase Chain Reaction". Bio/Technology.1994
11.          Forensic Science Handbook, vol. III (Regents/Prentice Hall, Englewood Cliffs, NJ, 1993).
12.          "Thermostable DNA Polymerases for a Wide Spectrum of Applications: Comparison of a Robust Hybrid TopoTaq to other enzymes". In Kieleczawa J. DNA Sequencing II: Optimizing Preparation and Cleanup. Jones and Bartlett. 2006
13.          Nielsen B, et al., Acute and adaptive responses in humans to exercise in a warm, humid environment, Eur J Physiol 1997
14.          Molnar GW, Survival of hypothermia by men immersed in the ocean. JAMA 1946
15.          Paton BC, Accidental hypothermia. Pharmacol Ther 1983
16.          Simpson K, Exposure to cold-starvation and neglect, in Simpson K (Ed): Modem Trends in Forensic Medicine. St Louis, MO, Mosby Co, 1953.
17.          Fitzgerald FT, Hypoglycemia and accidental hypothermia in an alcoholic population. West J Med 1980
18.          Stoner HB et al., Metabolic aspects of hypothermia in the elderly. Clin Sci 1980
19.          MacGregor DC et al., The effects of ether, ethanol, propanol and butanol on tolerance to deep hypothermia. Dis Chest 1966
20.          Cooper KE, Hunter AR, and Keatinge WR, Accidental hypothermia. Int Anesthesia Clin 1964
21.          Keatinge WR. The effects of subcutaneous fat and of previous exposure to cold on the body temperature, peripheral blood flow and metabolic rate of men in cold water. J Physiol 1960
22.          Sloan REG and Keatinge WR, Cooling rates of young people swimming in cold water. J Appl Physiol 1973
23.          Keatinge WR, Role of cold and immersion accidents. In Adam JM (Ed) Hypothermia – Ashore and Afloat. 1981, Chapter 4, Aberdeen Univ. Press, GB.
24.          Keatinge WR and Evans M, The respiratory and cardiovascular responses to immersion in cold and warm water. QJ Exp Physiol 1961
25.          Keatinge WR and Nadel JA, Immediate respiratory response to sudden cooling of the skin. J Appl Physiol 1965
26.          Golden F. St C. and Hurvey GR, The “After Drop” and death after rescue from immersion in cold water. In Adam JM (Ed). Hypothermia – Ashore and Afloat, Chapter 5, Aberdeen Univ. Press, GB 1981.
27.          Burton AC and Bazett HC, Study of average temperature of tissue, of exchange of heat and vasomotor responses in man by means of bath coloremeter. Am J Physiol 1936
28.          Adam JM, Cold Weather: Its characteristics, dangers and assessment, In Adam JM (Ed). Hypothermia – Ashore and Afloat, Aberdeen Univ. Press, GB1981.
29.          Modell JH and Davis JH, Electrolyte changes in human drowning victims. Anesthesiology 1969
30.          Bolte RG, et al., The use of extracorporeal rewarming in a child submerged for 66 minutes. JAMA 1988
31.          Ornato JP, The resuscitation of near-drowning victims. JAMA 1986
32.          Conn AW and Barker CA: Fresh water drowning and near-drowning — An update.1984;
33.          Reh H, On the early postmortem course of “washerwoman’s skin at the fingertips.” Z Rechtsmed 1984;
34.          Gonzales TA, Vance M, Helpern M, Legal Medicine and Toxicology. New York, Appleton-Century Co, 1937.
35.          Peabody AJ, Diatoms and drowning – A review, Med Sci Law 1980
36.          Foged N, Diatoms and drowning — Once more.Forens Sci Int 1983
37.          "Microscale chaotic advection enables robust convective DNA replication.". Analytical Chemistry. 2013
38.          Sourcebook in Forensic Serology, Immunology, and Biochemistry (U.S. Department of Justice, National Institute of Justice, Washington, D.C.,1983).
39.          C. A. Villee et al., Biology (Saunders College Publishing, Philadelphia, 2nd ed.,1989).
40.          Molecular Biology of the Gene (Benjamin/Cummings Publishing Company, Menlo Park, CA, 4th ed., 1987).
41.          Molecular Evolutionary Genetics (Plenum Press, New York,1985).
42.          Human Physiology. An Integrate. 2016
43.          Dumas JL and Walker N, Bilateral scapular fractures secondary to electrical shock. Arch. Orthopaed & Trauma Surg, 1992; 111(5)
44.          Stueland DT, et al., Bilateral humeral fractures from electrically induced muscular spasm. J. of Emerg. Med. 1989
45.          Shaheen MA and Sabet NA, Bilateral simultaneous fracture of the femoral neck following electrical shock. Injury. 1984
46.          Rajam KH, et al., Fracture of vertebral bodies caused by accidental electric shock. J. Indian Med Assoc. 1976
47.          Wright RK, Broisz HG, and Shuman M, The investigation of electrical injuries and deaths. Presented at the meeting of the American Academy of Forensic Science, Reno, NV, February 2000.

Komentarze

Popularne posty z tego bloga

# 15 Željko Ražnatović

Željko Ražnatović was born on 17 April 1952 – 15 January 2000 and known as Arkan , was a Serbian career criminal and commander of a paramilitary force in the Yugoslav Wars, called the Serb Volunteer Guard. He was enlisted on Interpol's most wanted list in the 1970s and 1980s for robberies and murders committed in a number of countries across Europe, and was later indicted by the UN for crimes against humanity for his role during the wars. Ražnatović was up until his death the most powerful crime boss in the Balkans. He was assassinated in 2000, before his trial. Željko Ražnatović was born in Brežice, a small border town in Slovenian Styria, FPR Yugoslavia. His father, Veljko Ražnatović, served as a decorated officer in the SFR Yugoslav Air Force, earning high rank for his notable World War II involvement on the Partisan side, and was stationed in Slovenian Styria at the time of Željko's birth. He spent part of his childhood in Zagreb (SR Croatia) and Pan...

Chemical Weapon

                                                Chemical weapon is the most dreadful of all weapons of mass destruction. Its power and devastating input could be seen and be very much aware of in Iran and Iraq. Its overwhelming impact on human body was reported and acknowledged in 1984. Early 1980s Iran and Iraq were fighting over the land and domination over the ideology and oil fields – somewhere in the middle were civilians and soldiers who were about to find out what the chemical weapon may do, its destructive notion was irreversible and inevitable – avoided and prevented. The soldier was a victim of the chemical weapon – one can only dream of in nightmares. He was wounded by a heavy smoke emitted from the artillery shells. He was very badly wounded, His skin began to itch, his eyes burned, the body was gradually covered with blisters. A co...

How They Get It Right and When They Don’t

In most serial homicides, FBI agents do not actively participate in the investigation, secure evidence, or pursue the suspect—that is the responsibility of the local police agency. Nor is the FBI called in if serial homicides occur in different jurisdictions—that is a myth. The FBI analysts act in an advisory capacity, only at the request of a local police department that submits a standard, thirteen-page Violent Criminal Apprehension Program (VICAP) analysis report to the FBI. The data from the VICAP report is fed into a computer known as Profiler, and the output of the computer is then elaborated on by the analysts in the form of a profile before being sent back to the local police department. FBI analysts sometimes travel to the scene of a crime or assign one of a team of specially trained local FBI agents, known as field profile coordinators, to work at the scene. The average FBI agent is fairly well educated—a university degree is required of recruits. The agents...